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Abstract. The derivation of the odd Burgers hierarchy is revisited. A first Hamiltonian
formulation of the basic equation of the hierarchy is presented in relation with its linear
counterpart. The generalized Poisson bracket is given explicitly. It contains exponentials of
integrals of the dynamic variable. It verifies Jacobi identity by construction and through direct
calculations. A second Hamiltonian formulation is also presented. It means that the equation,
as expected, is ‘bi-Hamiltonian’. This property permits, as usual, the construction of all the
hierarchy. Extension to matrix Burgers systems is suggested.

1. Introduction

Odd members of the Burgers hierarchy appeared first in an IPP report of the author [1].
They are obtained by extending the ‘linearization’ achieved through the Cole–Hopf ansatz
to equations containing as highest derivatives odd space derivatives. The most prominent
example is given by

ut = (u3)x + 3
2(u2)xx + uxxx. (1)

In a subsequent report [2], the properties of the wave envelope solutions of this equation are
investigated. Equation (1) also appeared in [3]. In parts of the literature (see for example
[4–6]), it is called the Sharma–Tasso–Olver (STO) equation. In section 2, we show how
equation (1) or STO can be linearized by the Cole–Hopf ansatz, and, in section 3, how this
same ansatz leads to a Hamiltonian formulation of the equation. Section 4 contains a direct
verification of the Jacobi identity for the Poisson bracket obtained in section 3. Section 5
deals with the second Hamiltonian formulation. Section 6 is devoted to the study of the
constants of motion and to a discussion of the implications of the ‘bi-Hamiltonian’ property
and possible generalizations.

2. Derivation of equation (1)

The Cole–Hopf ansatz relates the solutions of a nonlinear equation inu to the solutions of
a specific linear equation inφ in the following way

u = φx

φ
(2)

or its inverse (see, for example, [7])

φ = expD−1u = exp
1

2

( ∫ x

−∞
−

∫ ∞

x

)
u(x ′) dx ′ (3)
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where the definition ofD−1u is given by the argument of the exponential in the second
equality. In general, the time derivative ofφ can be written as

φt = A(u, ux, . . .)φ. (4)

The compatibility between equations (2) and (4) is warranted by

ut = ∂A(u)

∂x
(5)

if A(u) is a function, and not an operator.
In fact, a sequence of functionsAn(u) can be constructed by starting with

A1 = u (6)

and using the induction formula (see [8, 1])

An+1 = Anu + ∂An

∂x
. (7)

In this way, we obtain for each value ofn a nonlinear wave equation and its linear
counterpart. Forn = 1, we have

A2 = u2 + ux (8)

which leads to

ut = (u2)x + uxx (9)

and its linear counterpart

φt = φxx. (10)

Equation (8) is Burgers equation. Equation (10), which is the heat equation, is obtained
after applying relation (2) toA(u)φ in (4).

For n = 2, we have

A3 = (u2 + ux)u + (u2 + ux)x (11)

from which equation (1) follows as well as its linear counterpart

φt = φxxx. (12)

For another derivation of equation (1), let us replaceφ by its expression inu from
relation (3). For that purpose, the derivatives ofφ with respect tox and t are needed:

φt = D−1ut expD−1u (13)

φx = u expD−1u φxx = (u2 + ux) expD−1u (14)

φxxx = [(u2 + ux)u + (u2 + ux)x ] expD−1u. (15)

After inserting relations (13) and (15) into equation (12), we take the derivative with respect
to x, and recover equation (1). Similarly, other equations of the hierarchy can be constructed,
and, in particular, the equations of the odd hierarchy. Note that mixed equations can also
be constructed by takingA = ∑N

n=1 cnAn. For details, see [1].
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3. First Hamiltonian formulation

For convenience, we are going to assume throughout the paper periodic boundary conditions
for φ andu with

∫
u dx = 0 on a period. The variationsδu andδφ are taken equal to zero

at the boundaries, as usual. Under these circumstances, equation (12), which is the linear
counterpart of equation (1), is easy to cast in Hamiltonian form as follows

φt = ∂

∂x

δH

δφ
(16)

with

H = − 1
2

∫
φ2

x dx. (17)

To find a Hamiltonian formulation of equation (1), we transform the Hamiltonian (17)
according to (3) to obtain

H(u) = − 1
2

∫
u2(exp 2D−1u) dx. (18)

The next step is to expressδH
δφ

in terms of δH
δu

. Let us calculate first the variation ofH(u)

with respect tou

δH = −
∫

dx u exp(2D−1u)δu +
∫

dx [D−1(u2 exp(2D−1u(x ′))]δu. (19)

Now, calculate the variation ofφ with respect tou out of relation (3)

δφ = (expD−1u)D−1δu. (20)

From equation (20) it is easy to extract

δu = ∂

∂x
(exp−D−1uδφ) (21)

and insert it into equation (19), which becomes

δH =
∫

dx
∂

∂x
[u exp 2D−1u] exp(−D−1u)δφ −

∫
dx u2 expD−1uδφ. (22)

From equation (22) one can easily obtain

δH

δφ
=

[
(exp−D−1u)

∂

∂x
(u exp 2D−1u) − u2 expD−1u

]
. (23)

Taking equations (19) and (21) into account, equation (23) can be written as

δH

δφ
= − exp−D−1u

∂

∂x

δH

δu
. (24)

Finally, using equations (13) and (24) in (16), we obtain after taking thex derivative

ut = − ∂

∂x
exp−D−1u

∂

∂x
exp−D−1u

∂

∂x

δH

δu
(25)

with the H given by equation (18).
Equation (25) can be more compactly written, if we introduce the Hamiltonian operator

J

J = −D(exp−D−1u)D(exp−D−1u)D (26)

whereD is obviously the derivative with respect tox, and the ‘generalized Poisson bracket’

{F, G} =
∫

δF

δu
J

δG

δu
dx (27)
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whereF andG are any functionals ofu. For more details about those definitions, see, for
example, [9]. Definitions (26) and (27) allow equation (25) to be written in the form

ut = J
δH

δu
= {u, H }. (28)

Equation (28) together with the definitions (26) and (27) constitute a Hamiltonian
formulation of equation (1). Note that bracket (27) should fulfil Jacobi identity by
construction, i.e. due to the transformation (3). It is, however, instructive and safe to
see by direct calculations whether the Jacobi identity is verified, which is the topic of the
next section.

4. Verification of Jacobi identity

Bracket (27) is a generalized Poisson bracket (GPB) [9] if it fulfils the requirements of a
Lie algebra. The first requirement is antisymmetry i.e.

{F, G} = −{G, F } (29)

which can be seen by integrating by parts in (27).
The most important requirement is the fulfilment of Jacobi identity

{E, {F, G}} + {G, {E, F }} + {F, {G, E}} = 0. (30)

If J were independent upon u, the antisymmetry of GPB (27) would suffice to verify Jacobi
identity (30). In fact, the functional derivative of{F, G} contains three terms

δ{F, G}
δu

=
∫

dx

(
δF

δu

)′

u

J
δG

δu
+

∫
dx

δF

δu
J

(
δG

δu

)′

u

+
∫

dx
δF

δu
J ′

u

δG

δu
. (31)

The two first terms of (31) contain second-functional derivatives. This and the antisymmetry
of J cause their cancellation with the other corresponding terms in the Jacobi identity (30),
as mentioned in [9]. The last term contains the Fréchet derivative of the operatorJ . The
cancellation of this term in (30) is not obvious, so that its calculation is required (see [9]).
If we call this rest termR, we find

R =
∫

dx
δE

δu

∂

∂x
(exp−D−1u)

∂

∂x
(exp−3D−1u)

[(
δF

δu

)
xx

(
δG

δu

)
x

−
(

δF

δu

)
x

(
δG

δu

)
xx

]
+(cyclic permutations ofE, F andG). (32)

Let us integrate equation (32) twice by parts to obtain

R =
∫

dx (exp−4D−1u)

[(
δE

δu

)
xx

− u

(
δE

δu

)
x

] [(
δF

δu

)
xx

(
δG

δu

)
x

−
(

δF

δu

)
x

(
δG

δu

)
xx

]
+(cyclic permutations ofE, F andG). (33)

It is straightforward to see that all cyclic permutations in equation (33) cancel each other,
so thatR = 0. Jacobi identity is, indeed, verified.

5. Second Hamiltonian formulation

Since equation (1) and its linear counterpart (12) are completely integrable, a second
Hamiltonian formulation in the same dynamic variable, but with a different Hamiltonian
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operator and a different Hamiltonian, should be possible [10]. Indeed, equation (12) can be
written as

φt = ∂3

∂x3

δH1

δφ
(34)

with

H1 = 1
2

∫
dx φ2. (35)

Similarly to section 3, we expressδH1
δφ

in terms of δH1
δu

to obtain

δH1

δφ
= − exp(−D−1u)

∂

∂x

δH1

δu
. (36)

Now, using equations (13) and (36) in (34), we obtain after taking thex derivative

ut = − ∂

∂x
exp(−D−1u)

∂3

∂x3
exp(−D−1u)

∂

∂x

δH1

δu
(37)

where

H1 = 1
2

∫
dx exp 2D−1u. (38)

The new Hamiltonian operator is given by

K = −D exp(−D−1u)D3 exp(−D−1u)D (39)

and its associated GPB is

{F, G} =
∫

δF

δu
K

δG

δu
dx. (40)

The verification of Jacobi identity forK is accomplished in a way similar to the case with
J of section 4.

6. Constants of motion and discussion

Equation (12), which is the linear counterpart of equation (1) has an infinity of constants
of motion: ∫

dx φ

∫
dx φ2

∫
dx φ2

x

∫
dx φ2

xx etc. (41)

Equation (12) is, in some sense, completely integrable because the constants of motion are
in involution i.e. all their mutual GPB vanish. Through equations (3), (14) and (15), it is
easy to express constants of motion (41) in terms ofu. It is also easy to check that they are
in involution, using GPB (27). Note thatC = ∫

dx u would have been the only Casimir
of bracket (27), if it were not identically zero due to the choice of space of functions of
section 3.

The derivation of the Hamiltonian formulation given in section 3 concerns equation (1).
It is, however, easy to see that a similar derivation can be carried through for the higher
members of the odd hierarchy of Burgers equation. An interesting feature is that the GPB
(27) remains unchanged through the hierarchy. What obviously changes is the Hamiltonian.

These remarks apply also to the second Hamiltonian formulation given in section 5.
In fact, the whole hierarchy can be mapped, in principle [11], by the recurrence operator
R = KJ−1, since the system is bi-Hamiltonian. Finally, it would be interesting to know
whether these Hamiltonian formulations can be extended to the conservative part of the
‘matrix Burgers’ hierarchy introduced in [12].
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